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INTERACTION OF SHOCK WAVES

WITH A COMBINED DISCONTINUITY IN TWO-PHASE MEDIA.

2. NONEQUILIBRIUM APPROXIMATION

UDC 532.529A. A. Zhilin and A. V. Fedorov

Interaction of a shock wave and a motionless combined discontinuity separating two two-component
mixtures with different initial volume concentrations is studied on the basis of numerical simulation
of unsteady processes. The calculations were performed using a modified method of “coarse particles”
and a high-accuracy TVD difference scheme adapted to calculation of two-phase flows. Flow param-
eters determined by analytical dependences coincide with those obtained by numerical simulation at
large times of the process. Upon interaction of the shock wave and the combined discontinuity, the
type of the transient or reflected shock wave may coincide with or differ from the type of the inci-
dent shock wave. The possibility of existence of a pressure difference at the combined discontinuity
boundary, which was earlier predicted analytically, is confirmed.

The formulation of the problem of interaction of a shock wave (SW) and a discontinuity of porosity of the
mixture and the solution of this problem in the equilibrium approximation are given in [1]. We analyze the results of
numerical calculations of the initial-boundary problem (1), (2) from [1], which were performed in the nonequilibrium
approximation of mechanics of heterogeneous media.

NUMERICAL METHODS OF THE SOLUTION

To solve numerically the system of hyperbolic equations (1) with the initial-boundary conditions (2) from [1],
we used a modified method of “coarse particles” and a high-accuracy TVD difference scheme.

Method of “Coarse Particles.” The problems formulated were solved by the method of “coarse particles” of
the first order of approximation [3]. The finite-difference equations for determining velocities at the intermediate
layer in terms of time with allowance for the buoyancy force, the expressions for the volume concentration of the
heavy component at the next time layer, and the conditions of stability can be found in [4]. In calculating flows
with discontinuities, we used artificial viscosity in the form suggested in [5].

TVD Scheme. To solve the problem posed by a TVD scheme, the initial system of equations should be
represented in a completely divergent form. The possibility of converting the system of equations of mechanics of
heterogeneous media to a divergent form was demonstrated in [6] for equations of a model that ignores the difference
in pressures of the components of the mixture. It turned out that the conservation laws for a mathematical model
with allowance for the difference in pressures of the components and the changes in their volume concentrations
can also be written in a divergent form:
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Here P = ρ1 + a2ρ2 + Cm2 − 1 (the remaining notation can be found in [1]).
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Fig. 1. Distribution of velocities and pressures of the components of the mixture
upon interaction of the frozen-dispersed SW (D = −1.5 and m∗10 = 0.9) and
the CD (m∗∗10 = 0.7).

Representing the initial system (1) in a vector form

∂U

∂t
+
∂F

∂x
= G (2)

and finding the right and left eigenvectors of the Jacobi matrix ∂F (U)/∂U = J with averaged parameters over the
half-sum of values in the neighboring nodes of the grid [x̂ = (xi + xi+1)/2 = xi+1/2], we use the difference analog
of system (2) written in the following form in accordance with [7]:
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Thus, the vector of the solution U at the next time layer n+ 1 is determined by an explicit formula, and the
vectors of fluxes F̄ ni+1/2 are found using the standard algorithm [7] that involves diffusion and antidiffusion terms.

The calculation results obtained by the TVD scheme and the modified method of “coarse particles” were
compared with the exact solution for two types of shock-wave configurations in heterogeneous media [8, 9]. It was
shown that the use of TVD schemes is more effective for solving problems of mechanics of heterogeneous media.
The efficiency of the scheme was estimated by the computation time and the difference-grid step.

In calculations by the method of “coarse particles,” the Courant number varied from 0.2 to 0.1. High Courant
numbers correspond to continuous (dispersed) SW, and low Courant numbers refer to frozen SW [with internal and
(or) bow shock waves]. In numerical calculations by the TVD scheme, the Courant number was assumed to be
equal to 0.9.

DISCUSSION OF NUMERICAL RESULTS

Effect of Porosity behind the Combined Discontinuity on the Wave Pattern. We study the
process of interaction of an incident SW of the frozen-dispersed type (D = −1.5 and m∗10 = 0.9) and a combined
discontinuity (CD) behind which m∗∗10 varies from 0.7 to 0.1. For the case m∗∗10 = 0.7, Fig. 1 shows the time evolution
of velocities and pressures of the components of the mixture. The dashed vertical line indicates the initial position
of the CD boundary (x = 140). The initial SW (t = 0) steadily propagates over the mixture up to the CD within
the time interval t = 0–20 and interacts with the CD, decomposing into a transient SW of the frozen-dispersed
type, which continues its motion in the same direction as the incident SW, and a reflected SW of the dispersed type.
The transient SW completes its formation by the time t = 60 and propagates with a velocity Dtr = −1.55 (t = 80
and 100). It should be noted that the maximum pressure in the heavy phase is 2.525 before interaction with the
CD and decreases to 1.748 after interaction. The final equilibrium pressure behind the incident and transient SW
increases from Pfin = 1.384 to Pr = 1.632.
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TABLE 1
Parameters of the Mixture Established after Interaction of the Incident SW (D = −1.5) and the CD

m∗10 m∗∗10 ufin Pfin m1,fin uCD PCD Dtr m1,tr Dr m1,r

0.7 −0.704 1.632 −1.550 0.486 — 0.785

0.9
0.5 −0.792 1.384 0.800

−0.605 1.948 −1.645 0.269 0.415 0.768
0.3 −0.515 2.252 −1.920 0.127 0.470 0.752
0.1 −0.410 2.658 −2.533 0.033 0.533 0.732

0.9 −0.556 0.859 −1.325 0.834 RW 0.358
0.7 −0.505 1.035 −1.370 0.545 RW 0.339

0.5
0.6 −0.452 1.236 0.320

−0.479 1.131 −1.420 0.424 RW 0.330
0.4 −0.422 1.353 −1.610 0.230 — 0.310
0.3 −0.390 1.488 −1.765 0.155 1.118 0.299
0.1 −0.310 1.848 −2.390 0.040 1.215 0.274

0.7 −0.103 0.161 −1.040 0.669 RW 0.178

0.2
0.5 −0.075 0.263 0.167

−0.094 0.192 −1.120 0.458 RW 0.175
0.3 −0.083 0.234 −1.305 0.260 RW 0.170
0.1 −0.065 0.303 −1.880 0.079 1.513 0.163

For our initial data, the difference in volume concentration on the CD is not large: ∆m = 0.2. Behind the
incident SW moving to the CD, the volume concentration of the heavy component increases (t = 20), i.e., this
phase is compacted. Reaching the CD, the incident SW interacts with the CD, and the CD starts to move in the
direction of SW motion with a constant velocity behind the transient SW. The value of m2 increases both in the
transient and incident SW. Behind the transient SW, there follows the CD separating regions with different volume
concentrations behind the transient and reflected waves; the difference in volume concentrations is 0.299 (Table 1).
Thus, the difference increases by 50%. The value of m2 behind the reflected SW increases.

It should be noted that stabilization of the reflected dispersed SW requires a longer time than stabilization
of the transient SW.

We study the case where the volume concentration of the phases behind the combined boundary is m∗∗10 = 0.5.
Interacting with the CD, the incident frozen-dispersed SW with an internal SW in the light phase and a continuous
flow in the heavy phase decomposes into two dispersed shock waves. The first SW propagates in the same direction
as the incident SW but has a higher velocity Dtr = −1.645. The second SW moves with a velocity Dr = 0.415
in the opposite direction with respect to the incident SW. The shape of the pressure profiles of the transient and
reflected SW is monotonically increasing.

In studying the distributions of the mean densities of the light component at different times, we can note
that there is a small region with elevated density and volume concentration of the carrier phase behind the CD
front. The nature of this phenomenon is similar to that considered in [10] for the case of SW reflection from a rigid
wall. The maximum density of the light component is 2.294, which is greater than the final equilibrium value by
0.031, and the maximum volume concentration is 0.778 (the final equilibrium value is 0.768). Correspondingly, the
volume concentration and density of particles are lower than in the final equilibrium state. Thus, an increase in the
difference in volume concentration ahead of the CD and behind it leads to the emergence of a moving layer with
increased (decreased) volume concentration and density of the light (heavy) component.

With further decrease in concentration of the first phase (m∗∗10 = 0.3 and ∆m = 0.6), the reflected SW
(which is now of the frozen-dispersed type) becomes stronger, and the transient SW of the dispersed type becomes
weaker. After stabilization, the transient and reflected shock waves propagate with velocities corresponding to
those determined analytically in the equilibrium approximation in [1]. The CD velocity determined by an unsteady
numerical calculation also corresponds to the CD velocity obtained analytically in the equilibrium approximation.
The velocities of the transient and reflected shock waves become greater than in the case of m∗∗10 = 0.5 or m∗∗10 = 0.7
(Table 1). The pressure profile for the heavy component in the reflected SW becomes nonmonotonic, and a local
maximum Pmax

2 = 2.280 arises. This value of Pmax
2 is greater than the final equilibrium value equal to 2.253 but

smaller than Pmax
2 = 2.525 reached in the incident SW. The profiles of densities and volume concentrations of the

phases are similar to those considered previously for m∗∗10 = 0.5 with the only difference that the amplitude of the
reflected SW and CD increases, whereas the amplitude of the transient SW decreases. The amplitude of the peak
(valley) of density and volume concentration of the light (heavy) phase also increases.
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Fig. 2. Distributions of velocities and pressures of the components of the mix-
ture for D = −1.5, m∗10 = 0.9, and m∗∗10 = 0.1.

For m∗∗10 = 0.1, the transient SW is dispersed, and the reflected SW is frozen-dispersed (Fig. 2). The velocity
of the transient SW is greater than the velocity of the incident SW. Note, the velocity of transient shock waves
increases with decreasing m∗∗10. The reason is the increase in density of the mixture behind the CD. For example,
for m∗∗10 = 0.7, 0.5, 0.3, and 0.1, the velocities of the transient SW are Dtr = −1.55, −1.645, −1.92, and −2.533,
and the densities are ρ∗∗0 = 1.495, 1.825, 2.155, and 2.485, respectively. The pressure in the transient SW increases
monotonically in both components; in the reflected SW, the pressure of the light component increases jumplike in
the internal SW, and the pressure of the heavy component increases up to Pmax

2 = 2.760 and then decreases to
the final value Pr = 2.658. Comparing the case considered here with that for m∗∗10 = 0.3, we note that the relative
amplitude of the pressure peak in the heavy phase increases: ∆P2 = Pmax

2 − Pr = 0.105 and ∆P2 = 0.026 or
∆P̄2 = (Pmax

2 − Pr)/Pr = 3.97% and ∆P̄2 = 1.16%, respectively. In Fig. 2, there is a small region with different
pressures of the phases, which is located between the sections with steady values of phase pressures behind the
transient and reflected shock waves. The position of the region of pressure nonequilibrium coincides with the CD
boundary. Thus, the theory of the CD [2] is confirmed, which proves the existence of a pressure difference on the
CD. The behavior of volume concentrations and densities of the phases is similar to that for m∗∗10 = 0.3.

Variation of Porosity of the Mixture ahead of the CD. We study the interaction of an incident SW
of the dispersed type propagating with a velocity D = −1.5 over a mixture with m∗10 = 0.5 and a CD behind which
the value of m∗∗10 varies discretely from 0.1 to 0.9. Upon interaction with a denser medium (m∗∗10 = 0.1, 0.3, and
0.4), the incident SW decomposes into a reflected SW and a transient SW of the dispersed type. The velocity and
pressure profiles of the components are monotonic both for the incident SW and for the reflected and refracted
shock waves. As it could be expected, the velocity of the transient SW decreases with decreasing amplitude of the
incident SW from 0.792 for m∗10 = 0.9 to 0.452 for m∗10 = 0.5, and the velocity of the reflected SW increases. The
velocity of the CD boundary and the pressure on the CD decrease with decreasing m∗10 (see Table 1).

With increasing volume concentration of the light component behind the CD boundary (m∗∗10 = 0.6, 0.7,
and 0.9), the flow pattern changes, since the density of the mixture behind the CD is lower than the density ahead
of the CD. Figure 3 shows the pressure distribution before and after interaction of the dispersed SW and the CD
with m∗∗10 = 0.9 behind the latter. It follows from Fig. 3 that the incident dispersed SW propagating over a dense
mixture (t = 100 and 200) approaches the boundary of porosity discontinuity (t = 250) and interacts with a less
dense medium. As a result of interaction, the incident SW decomposes into a transient frozen-dispersed SW and a
reflected rarefaction wave. The transient frozen-dispersed SW is characterized by monotonically decreasing velocity
profiles and monotonically increasing pressures of the components of the mixture, for example, for m∗∗10 = 0.6 or by a
monotonically increasing pressure profile in the light component and a pressure maximum in the heavy component:
Pmax

2 = 1.048 and 1.361 for m∗∗10 = 0.7 and 0.9, respectively. These values of Pmax
2 are greater than the final

equilibrium pressure on the CD PCD = 1.035 and 0.859, respectively. Note that the value of the local pressure
maximum in the second component Pmax

2 for m∗∗10 = 0.9 is greater than the final equilibrium pressure behind the
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Fig. 3. Interaction of the incident dispersed SW (D = −1.5 and m∗10 = 0.5)
and the CD (m∗∗10 = 0.9).

TABLE 2
Parameters of the Mixture Established after Interaction of the Incident SW (D = −2.5) and the CD

m∗10 m∗∗10 ufin Pfin m1,fin uCD PCD Dtr m1,tr Dr m1,r

0.7 −1.703 7.840 −2.450 0.260 −0.472 0.575

0.9
0.5 −1.963 5.719 0.624

−1.558 9.260 −2.630 0.119 −0.374 0.549
0.3 −1.440 10.526 −2.947 0.051 −0.294 0.529
0.1 −1.328 11.586 −3.400 0.013 −0.214 0.511

0.9 −1.583 3.981 −2.155 0.678 RW 0.190
0.7 −1.453 4.974 −2.294 0.321 RW 0.168

0.5
0.6 −1.325 6.047 0.151

−1.389 5.498 −2.381 0.221 RW 0.159
0.4 −1.261 6.625 −2.642 0.100 0.998 0.144
0.3 −1.197 7.236 −2.813 0.064 1.050 0.137
0.1 −1.063 8.575 −3.238 0.015 1.163 0.124

0.7 −0.540 1.131 −1.402 0.534 RW 0.052
0.1 0.5 −0.375 2.332 0.035 −0.499 1.414 −1.555 0.305 RW 0.046

0.3 −0.447 1.786 −1.855 0.142 RW 0.041

incident SW (Pfin = 1.236). Figure 3 shows the reconstruction of the incident dispersed SW into a frozen-dispersed
SW upon passing into a less dense medium (m∗∗10 = 0.9). Note, the velocity of the transient SW is smaller than the
velocity of the incident SW and decreases with increasing m∗∗10.

A similar flow pattern is observed when a weak dispersed SW (D = −1.5 and m∗10 = 0.2) passes through the
CD. In this case, the CD velocity has the lowest value (see Table 1).

Effect of Velocity of the Incident SW. An increase in velocity of the incident SW (up to D = −2.5)
propagating over a medium with m∗10 = 0.1 and 0.5 and interacting with a less dense medium (m∗∗10 > m∗10) leads
to an increase in velocities of the CD and transient SW, and also to an increase in pressure on the CD and in
the final equilibrium state (Table 2). In the case of interaction of the incident SW with a denser medium, i.e., for
m∗∗10 < m∗10, it decomposes into a transient SW with similar velocity and pressure profiles of the components (the
velocity amplitude decreases, and the pressure amplitude increases with increasing density of the medium on the
CD) and a reflected SW of the dispersed type with monotonic velocity and pressure profiles. Note, the width of the
reflected SW increases with increasing m∗∗10.

Thus, an increase in velocity yields results similar to those obtained for D = −1.5. Only the propagation
velocities and amplitudes of SW formed are different.

We consider in more detail the case for D = −2.5 and m∗10 = 0.9. In this case, an incident SW of the
frozen-dispersed type interacts with a denser medium in which the volume concentration of the first phase m∗∗10

varies discretely from 0.1 to 0.7 with a step of 0.2. In all cases, the incident SW decomposes into transient and
reflected shock waves. The special feature of the variant considered is the fact that the reflected SW moves behind
the CD and transient SW from the viewpoint of a motionless observer. The reason is that the reflected SW is
entrained by the flow formed behind the front of the incident SW.
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Fig. 4. Velocity and pressure distributions of the components of the mixture
upon interaction of the frozen-dispersed SW (D = −2.5 and m∗10 = 0.9) and
the CD (m∗∗10 = 0.5).

TABLE 3
Parameters of the Mixture Established after Interaction of the Incident SW (D = −3.3) and the CD

m∗10 m∗∗10 ufin Pfin m1,fin uCD PCD Dtr m1,tr Dr m1,r

0.7 −2.502 15.159 −3.230 0.192 −1.145 0.475

0.9
0.5 −2.823 10.852 0.525

−2.320 18.123 −3.360 0.085 −1.035 0.453
0.3 −2.189 20.503 −3.590 0.036 −0.948 0.437
0.1 −2.099 22.236 −3.970 0.009 −0.887 0.427

0.9 −2.330 7.716 −2.840 0.578 RW 0.092
0.7 −2.150 9.604 −2.980 0.236 RW 0.081

0.4 0.5 −1.903 12.497 0.070 −1.983 11.523 −3.200 0.106 RW 0.073
0.3 −1.825 13.483 −3.440 0.044 — 0.067
0.1 −1.674 15.495 −3.720 0.011 0.867 0.062

0.9 −1.634 4.216 −2.200 0.671 RW 0.025

0.1
0.7 −1.128 9.246 0.015

−1.512 5.318 −2.350 0.311 RW 0.021
0.5 −1.390 6.513 −2.575 0.145 RW 0.018
0.3 −1.262 7.814 −2.875 0.061 RW 0.016

Figure 4 shows the interaction of the incident SW (D = −2.5 and m∗10 = 0.9) and the CD with m∗∗10 = 0.5
in the mixture behind the CD boundary. The cross section x = 120 contains the CD boundary separating two
regions: x ∈ [0, 120) where m10 = m∗∗10 = 0.5 and x ∈ [120, 150] where m10 = m∗10 = 0.9. It follows from Fig. 4
that the prescribed SW configuration (t = 0) propagates steadily over the mixture ahead of the CD at the time
t = 5. At t = 10, it interacts with the CD and decomposes into a transient SW of the frozen-dispersed type and a
reflected SW of the dispersed type. At the time t = 20, the front part of the transient SW may be considered to
be formed, whereas the zone of velocity relaxation up to the equilibrium value reached on the CD (uCD) may be
considered to become steady only at the time t = 30. At later times t = 40 and 50, the completely formed transient
SW propagates steadily over the mixture with m∗∗10 = 0.5 and a constant velocity Dtr = −2.63. The reflected SW
is formed immediately after interaction of the incident SW and CD. At the time t = 20, its main profile is formed,
and the process of SW formation may be considered to be completed at t = 30. At t = 40–150, the reflected SW of
the dispersed type propagates steadily in the direction of the transient SW. It should be noted that the direction
of motion of the reflected SW does not change, since the reflected SW is entrained by the flow arising behind the
incident SW front.

The change in m∗∗10 from 0.1 to 0.7 decreases the difference in velocities Dtr and Dr (|∆D| = |Dtr −Dr|). For
example, we have |∆D| = 3.186 for m∗∗10 = 0.1, |∆D| = 2.653 for m∗∗10 = 0.3, and |∆D| = 1.978 for m∗∗10 = 0.7.

We consider the case where the velocity of the incident SW is greater than the velocity of sound in pure
materials (ai < D = −3.3). For m∗10 = 0.1, the incident SW is an SW of the dispersed-frozen type. In the case of
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Fig. 5. Interaction of the dispersed-frozen SW (D = −3.3 and
m∗10 = 0.1) and the CD (m∗∗10 = 0.7).

TABLE 4

Relative Change in the Distance between the Transient and Reflected SW for m∗10 = 0.9

m∗∗10

(Dtr −Dr)/Dtr

D = −1.5 D = −2.5 D = −3.3

0.1 1.210 0.937 0.777
0.3 1.245 0.900 0.736
0.5 1.252 0.858 0.692
0.7 — 0.807 0.646

interaction of such an SW with a less dense medium (m∗∗10 = 0.3, 0.5, 0.7, and 0.9), the incident SW decomposes into
a transient SW and a rarefaction wave. The amplitude of velocity of the transient SW is greater than that of the
incident SW (Table 3). With increasing m∗∗10, the increases in velocity amplitude are 11.9, 23.2, 34.0, and 44.9% for
the corresponding values of m∗∗10, and the amplitude of pressure in the transient SW decreases by 15.5, 29.6, 42.5,
and 54.4%, respectively. A comparison of velocity and pressure variations with similar data for D = −2.5 shows
that the relative increase in velocity and pressure amplitude decreases almost by 10% with increasing velocity of
the incident SW. For all values of m∗∗10 considered, the velocity of the transient SW is smaller, and its type differs
from the type of the incident SW. In particular, when the incident SW enters a mixture with m∗∗10 = 0.3 and 0.5, the
wave changes to the dispersed type with a nonmonotonic velocity profile in the first component and a nonmonotonic
pressure profile in the second component. For m∗∗10 = 0.7 and 0.9, the transient SW is of the frozen-dispersed type
with an internal discontinuity in the light component.

Figure 5 shows the pressure and velocity distributions of the components of the mixture upon interaction
of the incident SW (D = −3.3 and m∗10 = 0.1) and the CD with m∗∗10 = 0.7 behind it. The initial position of the
CD boundary corresponds to the coordinate x = 150 (shown by the dashed vertical line in Fig. 5). The incident
dispersed-frozen SW propagates steadily over the mixture (t = 10), interacts with the CD boundary (t = 20), and
decomposes into a frozen-dispersed SW moving over the mixture at t = 30–80 and a reflected rarefaction wave
(RW).

For m∗10 = 0.9, the incident SW is a frozen-type SW with a two-front configuration. Upon interaction of
the incident SW and the CD behind which m∗∗10 = 0.1, 0.3, 0.5, and 0.7, it decomposes into transient and reflected
shock waves. The reflected SW moves in the same direction as the transient SW.

The calculated relative changes in the distance between the transient and reflected SW (Dtr −Dr)/Dtr for
m∗10 = 0.9 are listed in Table 4 for different velocities of the incident SW and identical values of m∗∗10. It follows
from Table 4 that the distance between the transient and reflected SW increases with increasing m∗∗10 for D = −1.5
and decreases for D = −2.5 and −3.3, since the direction of the reflected SW changes.

Interaction of the Rarefaction Wave and the CD. The rarefaction wave was initiated from discontinu-
ous stepwise initial data; D = −1.2 and m∗10 = 0.2. As is shown in [11], the fore RW front propagates with a variable
velocity changing from the frozen (Cf) to the equilibrium (Ce) velocity of sound, and the aft front propagates with
the least velocity of sound in the mixture, i.e., with the velocity of sound of the light component a1. In the case
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of RW interaction with a denser medium behind the CD boundary (m∗∗10 = 0.1), the transient and reflected waves
are rarefaction waves. In the transient RW, the velocity changes from 0 to uCD = 0.086, the pressure changes
from 0 to PCD = −0.317, and the volume concentration of the light component changes from 0.1 to m1,tr = 0.138.
The reflected RW propagates in the mixture with parameters established behind the transient RW (ufin = 0.102,
Pfin = −0.280, and m1,fin = 0.256). Equilibrium parameters established behind the reflected RW correspond to
parameters ahead of the moving CD (PCD, uCD, and m1,r = 0.265). In contrast to SW–CD interaction, upon
RW–CD interaction, the latter moves with a constant velocity uCD in the opposite direction with respect to the
transient RW or in the direction of the reflected RW.

When the incident RW interacts with a less dense medium (m∗∗10 > m∗10), it decomposes into a transient
RW with increasing velocities and decreasing pressures of the components of the mixture and a reflected wave with
increasing velocities and pressures of the components, which compresses the mixture formed behind the incident
RW. With increasing m∗∗10 (m∗∗10 = 0.3, 0.5, 0.7, and 0.9), the velocity behind the transient RW increases (0.113,
0.129, 0.141, and 0.151, respectively), and its propagation velocity decreases; the pressure amplitude of the transient
RW also decreases (−0.254, −0.215, −0.185, and −0.157, respectively). In the reflected compression wave, with
increasing m∗∗10 (m∗∗10 = 0.3, 0.5, 0.7, and 0.9), the velocity amplitude increases (0.011, 0.027, 0.039, and 0.049,
respectively) and the pressure amplitude increases (0.026, 0.065, 0.095, and 0.123, respectively).

The difference in volume concentration of the light (heavy) component at the CD boundary is not constant as
the RW passes through the CD. For example, for m∗∗10 = 0.1, the difference is ∆m0 = 0.1 before RW–CD interaction
and ∆mfin = 0.127 after interaction, i.e., it increases by 27%; the increase is only 13% for m∗∗10 = 0.3, 6% for
m∗∗10 = 0.5, and 1.4% for m∗∗10 = 0.7; for m∗∗10 = 0.9, the difference decreases by 2%.

The types of incident, transient, and reflected waves for various initial parameters of the mixture are listed
in Table 5.

Comparison of Analytical and Numerical Results. Tables 1–3 give the flow parameters in equilibrium
states behind the incident SW (ufin, Pfin, and m1,fin) and also the parameters established after SW–CD interaction
(Dtr, Dr, uCD, PCD, m1,tr, and m1,r) for various ratios of initial volume concentrations on the CD and incident SW
velocities. An analysis of the data in Tables 1–3 allows us to make the following conclusions.

— With increasing m∗∗10, the absolute value of velocity of the transient SW, the pressure on the CD, and the
velocity of the reflected SW and CD boundary decrease due to the decrease in density of the mixture behind the
CD.

— With increasing m∗10, the pressure on the CD and the velocity of the transient SW and CD increase, and
the velocity of the reflected SW decreases, which is caused by the increase in velocity and pressure amplitudes in
the incident SW.

— An increase in velocity of the incident SW leads to a natural growth in the velocity of the CD boundary
and the pressure on the CD.

The special feature of the process considered is the different character of variation of velocity of the reflected
SW. As it follows from Tables 1–3, with increasing absolute velocity of the incident SW, the velocity of the reflected
SW moving in the opposite direction with respect to the initial position of the CD boundary (Dr > 0) gradually
decreases and vanishes (Dr = 0) at a certain value D = D∗. A further increase in velocity (|D| > |D∗|) leads to
entrainment of the reflected SW (Dr < 0), i.e., it moves in the direction of the transient SW and CD boundary.

A comparison of parameters established after interaction of the incident SW and CD, which were obtained
by numerical calculations of the unsteady problem (see Tables 1–3), and results obtained in the equilibrium ap-
proximation (see Tables 1–3 in [1]) revealed some regular features. In particular, the difference between numerical
and analytical calculations increases in the following cases:

— with increasing volume concentration of the light component m∗10 ahead of the CD boundary, i.e., with
increasing velocity and pressure amplitudes in the incident SW;

— with increasing volume concentration of the light component behind the CD boundary;
— with increasing velocity of the incident SW.
Note that the difference between the equilibrium parameters obtained by analytical methods and numerical

results obtained by the TVD difference scheme is smaller than in the case of using the modified method of “coarse
particles.”

526



TABLE 5
Wave types

m∗10 m∗∗10 Incident Transient Reflected

D = −1.2

0.1 RW RW RW

0.3 RW RW CW

0.2 0.5 RW RW CW

0.7 RW RW CW

0.9 RW RW CW

D = −1.5

0.1 DSW DSW DSW

0.2
0.3 DSW DSW RW

0.5 DSW DSW RW

0.7 DSW DSW RW

0.1 DSW DSW DSW

0.3 DSW DSW DSW

0.5
0.4 DSW DSW DSW

0.6 DSW FDSW RW

0.7 DSW FDSW RW

0.9 DSW FDSW RW

0.1 FDSW DSW FDSW

0.9
0.3 FDSW DSW FDSW

0.5 FDSW DSW DSW

0.7 FDSW FDSW DSW

D = −3.3

0.3 DFSW FDSW RW

0.1
0.5 DFSW FDSW RW

0.7 DFSW FDSW RW

0.9 DFSW FDSW RW

0.1 DFSW DFSW DSW

0.3 DFSW DFSW DSW

0.4 0.5 DFSW DFSW RW

0.7 DFSW FDSW RW

0.9 DFSW FDSW RW

0.9
0.1 FSW DFSW DSW

0.3 FSW DFSW DSW

0.5 FSW FSW DSW

0.7 FSW FSW DSW

Notes. The following wave types are obtained: rarefaction wave (RW), com-
pression wave (CW), dispersed shock wave (DSW), frozen-dispersed shock
wave (FDSW), dispersed-frozen shock wave (DFSW), and frozen shock wave
with a two-front configuration (FSW).
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CONCLUSIONS

Numerical simulation of wave interaction with the CD allows us to make the following conclusions.
Interacting with the CD, incident shock waves of various types decompose into shock waves whose type

depends on the relationship of the components in the initial state of the mixture. Special features of the behavior
of parameters depending on the incident SW velocity are revealed.

Upon interaction with the CD, rarefaction waves decompose into rarefaction waves or compression waves,
depending on the initial concentrations of the components in the mixture.
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